Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Sci Transl Med ; 16(741): eadj5705, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569015

RESUMO

Cancer-associated fibroblasts (CAFs) are abundant stromal cells in the tumor microenvironment that promote cancer progression and relapse. However, the heterogeneity and regulatory roles of CAFs underlying chemoresistance remain largely unclear. Here, we performed a single-cell analysis using high-dimensional flow cytometry analysis and identified a distinct senescence-like tetraspanin-8 (TSPAN8)+ myofibroblastic CAF (myCAF) subset, which is correlated with therapeutic resistance and poor survival in multiple cohorts of patients with breast cancer (BC). TSPAN8+ myCAFs potentiate the stemness of the surrounding BC cells through secretion of senescence-associated secretory phenotype (SASP)-related factors IL-6 and IL-8 to counteract chemotherapy. NAD-dependent protein deacetylase sirtuin 6 (SIRT6) reduction was responsible for the senescence-like phenotype and tumor-promoting role of TSPAN8+ myCAFs. Mechanistically, TSPAN8 promoted the phosphorylation of ubiquitin E3 ligase retinoblastoma binding protein 6 (RBBP6) at Ser772 by recruiting MAPK11, thereby inducing SIRT6 protein destruction. In turn, SIRT6 down-regulation up-regulated GLS1 and PYCR1, which caused TSPAN8+ myCAFs to secrete aspartate and proline, and therefore proved a nutritional niche to support BC outgrowth. By demonstrating that TSPAN8+SIRT6low myCAFs were tightly associated with unfavorable disease outcomes, we proposed that the combined regimen of anti-TSPAN8 antibody and SIRT6 activator MDL-800 is a promising approach to overcome chemoresistance. These findings highlight that senescence contributes to CAF heterogeneity and chemoresistance and suggest that targeting TSPAN8+ myCAFs is a promising approach to circumvent chemoresistance.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Sirtuínas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/patologia , Fibroblastos/patologia , Microambiente Tumoral , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases , Tetraspaninas/genética , Tetraspaninas/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473906

RESUMO

Many metastatic cancers with poor prognoses correlate to downregulated CD82, but exceptions exist. Understanding the context of this correlation is essential to CD82 as a prognostic biomarker and therapeutic target. Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancer. We aimed to uncover the function and mechanism of CD82 in OSCC. We investigated CD82 in human OSCC cell lines, tissues, and healthy controls using the CRISPR-Cas9 gene knockout, transcriptomics, proteomics, etc. CD82 expression is elevated in CAL 27 cells. Knockout CD82 altered over 300 genes and proteins and inhibited cell migration. Furthermore, CD82 expression correlates with S100 proteins in CAL 27, CD82KO, SCC-25, and S-G cells and some OSCC tissues. The 37-50 kDa CD82 protein in CAL 27 cells is upregulated, glycosylated, and truncated. CD82 correlates with S100 proteins and may regulate their expression and cell migration. The truncated CD82 explains the invasive metastasis and poor outcome of the CAL 27 donor. OSCC with upregulated truncated CD82 and S100A7 may represent a distinct subtype with a poor prognosis. Differing alternatives from wild-type CD82 may elucidate the contradictory functions and pave the way for CD82 as a prognostic biomarker and therapeutic target.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/metabolismo , Proteína Kangai-1/metabolismo , Tetraspaninas/metabolismo , Proteínas S100 , Biomarcadores , Proteína A7 Ligante de Cálcio S100
3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542421

RESUMO

Extracellular vesicles produced by tumor cells (TEVs) influence all stages of cancer development and spread, including tumorigenesis, cancer progression, and metastasis. TEVs can trigger profound phenotypic and functional changes in target cells through three main general mechanisms: (i) docking of TEVs on target cells and triggering of intra-cellular signaling; (ii) fusion of TEVs and target cell membranes with release of TEVs molecular cargo in the cytoplasm of recipient cell; and (iii) uptake of TEVs by recipient cells. Though the overall tumor-promoting effects of TEVs as well as the general mechanisms involved in TEVs interactions with, and uptake by, recipient cells are relatively well established, current knowledge about the molecular determinants that mediate the docking and uptake of tumor-derived EVs by specific target cells is still rather deficient. These molecular determinants dictate the cell and organ tropism of TEVs and ultimately control the specificity of TEVs-promoted metastases. Here, we will review current knowledge on selected specific molecules that mediate the tropism of TEVs towards specific target cells and organs, including the integrins, ICAM-1 Inter-Cellular Adhesion Molecule), ALCAM (Activated Leukocyte Cell Adhesion Molecule), CD44, the metalloproteinases ADAM17 (A Disintegrin And Metalloproteinase member 17) and ADAM10 (A Disintegrin And Metalloproteinase member 10), and the tetraspanin CD9.


Assuntos
Desintegrinas , Vesículas Extracelulares , Humanos , Comunicação Celular , Tetraspaninas/metabolismo , Carcinogênese/metabolismo , Vesículas Extracelulares/metabolismo
4.
Front Immunol ; 15: 1336246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515751

RESUMO

Introduction: To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods: We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results: Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion: These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígenos CD/metabolismo , Linfócitos do Interstício Tumoral , Interleucina-2/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/metabolismo , Citocinas/metabolismo , Tetraspaninas/metabolismo , Tetraspanina 28 , Proteína Kangai-1/metabolismo
5.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 97-103, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430035

RESUMO

Barrett's esophagus (BE) belongs to a pathological phenomenon occurring in the esophagus, this paper intended to unveil the underlying function of miR-378a-5p and its target TSPAN8 in BE progression. GEO analysis was conducted to determine differentially expressed genes in BE samples. Non-dysplastic metaplasia BE samples, high-grade dysplastic BE samples and controls were collected from subjects. CP-A and CP-B cells were exposed to bile acids (BA) to mimic gastroesophageal reflux in BE cells. RT-qPCR as well as western blot were applied for verifying expressions of miR-378a-5p, TSPAN8, CDX2 and SOX9. CCK-8, wound scratch together with Transwell assays were exploited for ascertaining cell proliferation, migration as well as invasion. The targeted relationship of miR-378a-5p and TSPAN8 could be verified by correlation analysis, dual-luciferase reporter experiment, and rescue experiments. Through analyzing GSE26886 dataset, we screened the most abundantly expressed gene TSPAN8 in BE samples. miR-378a-5p was reduced whereas TSPAN8 was elevated in CP-A as well as CP-B cells after triggering with BA. Knocking down TSPAN8 could counteract BA-triggered enhancement in BE cell proliferation, migration along with invasion. miR-378a-5p could suppress BE cell proliferation, and migration along with invasion via targeting TSPAN8. In BE, miR-378a-5p targeted TSPAN8 to inhibit BE cell proliferation, and migration along invasion. miR-378a-5p deletion or elevation of TSPAN8 may be key point in regulating CDX2 and SOX9 levels, thereby promoting BE formation.


Assuntos
Esôfago de Barrett , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Esôfago de Barrett/genética , Proliferação de Células/genética , Hiperplasia , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Tetraspaninas/genética , Tetraspaninas/metabolismo
6.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
7.
J Immunol ; 212(7): 1075-1080, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363205

RESUMO

B cell trafficking involves the coordinated activity of multiple adhesive and cytokine-receptor interactions, and the players in this process are not fully understood. In this study, we identified the tetraspanin CD53 as a critical regulator of both normal and malignant B cell trafficking. CXCL12 is a key chemokine in B cell homing to the bone marrow and secondary lymphoid organs, and both normal and malignant B cells from Cd53-/- mice have reduced migration toward CXCL12 in vitro, as well as impaired marrow homing in vivo. Using proximity ligation studies, we identified the CXCL12 receptor, CXCR4, as a novel, to our knowledge, CD53 binding partner. This interaction promotes receptor function, because Cd53-/- B cells display reduced signaling and internalization of CXCR4 in response to CXCL12. Together, our data suggest that CD53 interacts with CXCR4 on both normal and malignant B cells to promote CXCL12 signaling, receptor internalization, and marrow homing.


Assuntos
Linfócitos B , Medula Óssea , Animais , Camundongos , Medula Óssea/metabolismo , Linfócitos B/metabolismo , Quimiocina CXCL12/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Proteínas de Transporte/metabolismo , Receptores CXCR4/metabolismo , Movimento Celular/fisiologia , Células da Medula Óssea/metabolismo
8.
Hum Genomics ; 18(1): 22, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424652

RESUMO

BACKGROUND: To report newly found TSPAN12 mutations with a unique form of familial exudative vitreoretinopathy (FEVR) and find out the possible mechanism of a repeated novel intronic variant in TSPAN12 led to FEVR. RESULTS: Nine TSPAN12 mutations with a unique form of FEVR were detected by panel-based NGS. MINI-Gene assay showed two splicing modes of mRNA that process two different bands A and B, and mutant-type shows replacement with the splicing mode of Exon11 hopping. Construction of wild-type and mutant TSPAN12 vector showed the appearance of premature termination codons (PTC). In vitro expression detection showed significant down-regulated expression level of TSPAN12 mRNAs and proteins in cells transfected with mutant vectors compared with in wild-type group. On the contrary, translation inhibitor CHX and small interfering RNA of UPF1 (si-UPF1) significantly increased mRNA or protein expression of TSPAN12 in cells transfected with the mutant vectors. CONCLUSIONS: Nine mutations in TSPAN12 gene are reported in 9 FEVR patients with a unique series of ocular abnormalities. The three novel TSPAN12 mutations trigger NMD would cause the decrease of TSPAN12 proteins that participate in biosynthesis and assembly of microfibers, which might lead to FEVR, and suggest that intronic sequence analysis might be a vital tool for genetic counseling and prenatal diagnoses.


Assuntos
Códon sem Sentido , Tetraspaninas , Humanos , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/diagnóstico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Linhagem , Mutação , Análise Mutacional de DNA , Transativadores/genética , RNA Helicases/genética
9.
Blood ; 143(17): 1738-1751, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215390

RESUMO

ABSTRACT: In the effort to improve immunophenotyping and minimal residual disease (MRD) assessment in acute lymphoblastic leukemia (ALL), the international Berlin-Frankfurt-Münster (iBFM) Flow Network introduced the myelomonocytic marker CD371 for a large prospective characterization with a long follow-up. In the present study, we aimed to investigate the clinical and biological features of CD371-positive (CD371pos) pediatric B-cell precursor ALL (BCP-ALL). From June 2014 to February 2017, 1812 pediatric patients with newly diagnosed BCP-ALLs enrolled in trial AIEOP-BFM ALL 2009 were evaluated as part of either a screening (n = 843, Italian centers) or validation cohort (n = 969, other iBFM centers). Laboratory assessment at diagnosis consisted of morphological, immunophenotypic, and genetic analysis. Response assessment relied on morphology, multiparametric flow cytometry (MFC), and polymerase chain reaction (PCR)-MRD. At diagnosis, 160 of 1812 (8.8%) BCP-ALLs were CD371pos. This correlated with older age, lower ETV6::RUNX1 frequency, immunophenotypic immaturity (all P < .001), and strong expression of CD34 and of CD45 (P < .05). During induction therapy, CD371pos BCP-ALLs showed a transient myelomonocytic switch (mm-SW: up to 65.4% of samples at day 15) and an inferior response to chemotherapy (slow early response, P < .001). However, the 5-year event-free survival was 88.3%. Among 420 patients from the validation cohort, 27 of 28 (96.4%) cases positive for DUX4-fusions were CD371pos. In conclusion, in the largest pediatric cohort, CD371 is the most sensitive marker of transient mm-SW, whose recognition is essential for proper MFC MRD assessment. CD371pos is associated to poor early treatment response, although a good outcome can be reached after MRD-based ALL-related therapies.


Assuntos
Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Masculino , Feminino , Pré-Escolar , Adolescente , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Lactente , Neoplasia Residual/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Imunofenotipagem , Linhagem da Célula
10.
Cells ; 13(2)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275818

RESUMO

Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called "tetraspanin-enriched microdomains (TEMs)" or "tetraspanin nanodomains" that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers.


Assuntos
Neoplasias , Tetraspaninas , Humanos , Tetraspaninas/genética , Tetraspaninas/metabolismo , Neoplasias/genética , Proteínas de Membrana , Membrana Celular/metabolismo , Adesão Celular
11.
Plant J ; 117(3): 892-908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955978

RESUMO

Tetraspanins (TETs) are small transmembrane scaffold proteins that distribute proteins into highly organized microdomains, consisting of adaptors and signaling proteins, which play important roles in various biological events. In plants, understanding of tetraspanin is limited to the Arabidopsis TET genes' expression pattern and their function in leaf and root growth. Here, we comprehensively analyzed all rice tetraspanin (OsTET) family members, including their gene expression pattern, protein topology, and subcellular localization. We found that the core domain of OsTETs is conserved and shares a similar topology of four membrane-spanning domains with animal and plant TETs. OsTET genes are partially overlapping expressed in diverse tissue domains in vegetative and reproductive organs. OsTET proteins preferentially targeted the endoplasmic reticulum. Mutation analysis showed that OsTET5, OsTET6, OsTET9, and OsTET10 regulated plant height and tillering, and that OsTET13 controlled root growth in association with the jasmonic acid pathway. In summary, our work provides systematic new insights into the function of OsTETs in rice growth and development, and the data provides valuable resources for future research.


Assuntos
Arabidopsis , Oryza , Animais , Oryza/genética , Oryza/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Proteínas de Membrana/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Metabolism ; 151: 155746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016540

RESUMO

BACKGROUND: Multinucleation is a hallmark of osteoclast formation and has a unique ability to resorb bone matrix. During osteoclast differentiation, the cytoskeleton reorganization results in the generation of actin belts and eventual bone resorption. Tetraspanins are involved in adhesion, migration and fusion in various cells. However, its function in osteoclast is still unclear. In this study, we identified Tm4sf19, a member of the tetraspanin family, as a regulator of osteoclast function. MATERIALS AND METHODS: We investigate the effect of Tm4sf19 deficiency on osteoclast differentiation using bone marrow-derived macrophages obtained from wild type (WT), Tm4sf19 knockout (KO) and Tm4sf19 LELΔ mice lacking the large extracellular loop (LEL). We analyzed bone mass of young and aged WT, KO and LELΔ mice by µCT analysis. The effects of Tm4sf19 LEL-Fc fusion protein were accessed in osteoclast differentiation and osteoporosis animal model. RESULTS: We found that deficiency of Tm4sf19 inhibited osteoclast function and LEL of Tm4sf19 was responsible for its function in osteoclasts in vitro. KO and LELΔ mice exhibited higher trabecular bone mass compared to WT mice. We found that Tm4sf19 interacts with integrin αvß3 through LEL, and that this binding is important for cytoskeletal rearrangements in osteoclast by regulating signaling downstream of integrin αvß3. Treatment with LEL-Fc fusion protein inhibited osteoclast function in vitro and administration of LEL-Fc prevented bone loss in an osteoporosis mouse model in vivo. CONCLUSION: We suggest that Tm4sf19 regulates osteoclast function and that LEL-Fc may be a promising drug to target bone destructive diseases caused by osteoclast hyper-differentiation.


Assuntos
Doenças Ósseas , Reabsorção Óssea , Osteoporose , Tetraspaninas , Animais , Camundongos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Integrina alfaVbeta3/metabolismo , Osteoclastos , Osteoporose/genética , Osteoporose/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
13.
Nat Rev Immunol ; 24(3): 193-212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37758850

RESUMO

Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. 'Membrane-organizing proteins' and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand-receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.


Assuntos
Galectinas , Tetraspaninas , Humanos , Galectinas/análise , Galectinas/metabolismo , Tetraspaninas/análise , Tetraspaninas/química , Tetraspaninas/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais
14.
Cancer Gene Ther ; 31(3): 454-463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135697

RESUMO

Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Tetraspaninas/genética , Tetraspaninas/metabolismo
15.
Cells ; 12(21)2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37947657

RESUMO

Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.


Assuntos
Doenças Retinianas , Doenças Vasculares , Humanos , Criança , Vitreorretinopatias Exsudativas Familiares/metabolismo , Células Endoteliais/metabolismo , Tetraspaninas/metabolismo , Doenças Retinianas/metabolismo , Doenças Vasculares/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
16.
Int J Med Sci ; 20(13): 1744-1754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928882

RESUMO

Chronic venous disease (CVD) is a complex and common vascular disorder characterized by increased blood pressure and morpho-functional changes in the venous system like varicose veins. Pregnancy is one of the main risk factors for suffering from this condition. Despite the consequences of CVD during pregnancy remains to be fully understood, compelling evidence support that this condition represents an important stress for the mother and the fetus, leading to significant histopathological changes in the placenta. Tetraspanins (CD9, CD63, and CD81), ALG-2-interacting protein X (Alix), and heat-shock protein (HSP-70) are cellular components involved in multiple biological processes under homeostatic and disease conditions. Despite some studies that have evidence of their relevance in the placenta tissue and pathological pregnancies, there is limited knowledge regarding their role in pregnancy-associated CVD. In this sense, the present work aims to analyze gene and protein expression of these components in the placenta of women with CVD (n=62) in comparison to healthy women (n=52) through RT-qPCR and immunohistochemistry, respectively. Our results show an increased gene and protein expression of the different studied markers, suggesting their potential involvement in the pathological environment of the placenta of women who undergo CVD during pregnancy. In this sense, further studies should be directed to deep into the potential implications of these changes to understand the effects and consequences of this condition in maternofetal wellbeing.


Assuntos
Doenças Cardiovasculares , Tetraspaninas , Gravidez , Humanos , Feminino , Tetraspaninas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Placenta/metabolismo , Proteínas de Choque Térmico/metabolismo
17.
J Virol ; 97(10): e0075723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712703

RESUMO

IMPORTANCE: Pathogens often hijack extracellular vesicle (EV) biogenesis pathways for assembly, egress, and cell-to-cell spread. Herpes simplex virus 1 (HSV-1) infection stimulated EV biogenesis through a CD63 tetraspanin biogenesis pathway and these EVs activated antiviral responses in recipient cells restricting the infection. HSV-1 inhibits autophagy to evade the host, and increased CD63 exocytosis could be a coping mechanism, as CD63 is involved in both cargo delivery to lysosomes during autophagy and exocytosis. We analyzed exocytosis after infection with two HSV-1 mutants, a ΔICP34.5 and a ΔICP0, that could not inhibit autophagy. Unlike HSV-1(F), neither of these viruses stimulated increased EV biogenesis through the CD63 pathway. ΔICP34.5 stimulated production of microvesicles and apoptotic bodies that were CD63-negative, while ΔICP0 displayed an overall reduced production of EVs. These EVs activated innate immunity gene expression in recipient cells. Given the potential use of these mutants for therapeutic purposes, the immunomodulatory properties of EVs associated with them may be beneficial.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Autofagia , Exocitose , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Tetraspaninas/metabolismo
18.
Cancer Sci ; 114(12): 4535-4547, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750019

RESUMO

Papillary thyroid cancer (PTC) is the most common form of thyroid cancer and is characterized by its tendency for lymphatic metastasis, leading to a poor prognosis. Tetraspanin 1 (TSPAN1) is a member of the tetra-transmembrane protein superfamily and has been implicated in tumorigenesis and cancer metastasis in various studies. However, the role of TSPAN1 in PTC tumor development remains unclear. In this study, we aimed to investigate the impact of TSPAN1 on PTC cell behavior. Our results demonstrate that knockdown of TSPAN1 inhibits PTC cell proliferation, migration, and invasion, while overexpression of TSPAN1 has the opposite effect. These findings suggest that TSPAN1 might play a role in the tumorigenesis and invasiveness of PTC. Mechanistically, we found that TSPAN1 activates the ERK pathway by increasing its phosphorylation, subsequently leading to upregulated expression of c-Myc. Additionally, we observed that TSPAN1-ERK-c-Myc axis activation promotes glycolytic activity in PTC cells, as evidenced by the upregulation of glycolytic genes such as LDHA. Taken together, our findings indicate that TSPAN1 acts as an oncogene in PTC by regulating glycolytic metabolism. This discovery highlights the potential of TSPAN1 as a promising therapeutic target for PTC treatment. Further research in this area could provide valuable insights into the development of targeted therapies for PTC patients.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Tetraspaninas/genética , Tetraspaninas/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
19.
Mol Biol Rep ; 50(10): 7955-7965, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535246

RESUMO

BACKGROUND: Tetraspanin 8 (TSPAN8), a transmembrane glycoprotein, is implicated in various pathological conditions including human malignancies. However, the roles and underlying mechanisms of TSPAN8 in promoting gastric cancer(GC) progression are yet to be fully understood. METHODS AND RESULTS: Our study found that TSPAN8 expression was significantly elevated in GC tissues. We also observed a positive correlation between high TSPAN8 expression and various clinicopathological characteristics of GC, including tumor differentiation, invasion depth, lymph node metastasis, and clinical stage. Moreover, the elevated TSPAN8 expression was indicative of poor prognosis. Functionally, we observed that knockdown of TSPAN8 significantly attenuated while overexpression of TSPAN8 promoted GC cell migration and invasion. In vivo experiments, knockdown of TSPAN8 suppressed lung metastasis in nude mice. We further explored the underlying mechanisms of TSPAN8 and found that it regulated EGFR expression in GC cells by accelerating phosphorylation of EGFR and AKT. CONCLUSIONS: Our study reveals that TSPAN8 plays a significant role in promoting tumor metastasis by activating the EGFR/AKT pathway, indicating that it may serve as a promising therapeutic target of gastric cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Invasividade Neoplásica , Tetraspaninas/genética , Tetraspaninas/metabolismo
20.
J Exp Clin Cancer Res ; 42(1): 195, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542345

RESUMO

BACKGROUND: Bone metastasis is a principal cause of mortality in patients with prostate cancer (PCa). Increasing evidence indicates that high expression of stromal interaction molecule 1 (STIM1)-mediated store-operated calcium entry (SOCE) significantly activates the calcium (Ca2+) signaling pathway and is involved in multiple steps of bone metastasis in PCa. However, the regulatory mechanism and target therapy of STIM1 is poorly defined. METHODS: Liquid chromatography-mass spectrometry analysis was performed to identify tetraspanin 18 (TSPAN18) as a binding protein of STIM1. Co-IP assay was carried out to explore the mechanism by which TSPAN18 inhibits STIM1 degradation. The biological function of TSPAN18 in bone metastasis of PCa was further investigated in vitro and in vivo models. RESULT: We identified that STIM1 directly interacted with TSPAN18, and TSPAN18 competitively inhibited E3 ligase tripartite motif containing 32 (TRIM32)-mediated STIM1 ubiquitination and degradation, leading to increasing STIM1 protein stability. Furthermore, TSPAN18 significantly stimulated Ca2+ influx in an STIM1-dependent manner, and then markedly accelerated PCa cells migration and invasion in vitro and bone metastasis in vivo. Clinically, overexpression of TSPAN18 was positively associated with STIM1 protein expression, bone metastasis and poor prognosis in PCa. CONCLUSION: Taken together, this work discovers a novel STIM1 regulative mechanism that TSPAN18 protects STIM1 from TRIM32-mediated ubiquitination, and enhances bone metastasis of PCa by activating the STIM1-Ca2+ signaling axis, suggesting that TSPAN18 may be an attractive therapeutic target for blocking bone metastasis in PCa.


Assuntos
Cálcio , Neoplasias da Próstata , Masculino , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Neoplasias da Próstata/genética , Ubiquitinação , Sinalização do Cálcio , Proteína ORAI1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...